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In this paper we develop a theory for a rheometrical device for measuring the speed 
of shear waves into a region at rest. The device is a Couette apparatus with a narrow 
gap. The outer cylinder is moved impulsively and a time of transit is measured. The 
linearized theory governing this apparatus is reduced to a perturbation of Stokes’ 
first problem between parallel planes. A method for determining an effective shear 
modulus from measured values of the wave speed is discussed and various cases are 
analysed. An experimental apparatus based on this theory, together with tabular 
data, is discussed in a companion paper (Part 2 ,  Joseph, Riccius & Arney 1986). 

1. Constitutive equations 
There is a great simplification in the problem of constitutive modelling when the 

deformations are a small perturbation of states of rest. These deformations depend 
on a Newtonian viscosity ,u and a smooth relaxation function G(s) ,  where G(s)  > 0 ,  
G(s)  < 0 for 0 < s = t -7 < 00 and 7 is the past time. The stress 7 is given by 

7 = 2pD[u]  + 2 G(s)  D[u(x, t - s ) ]  ds, 1: 
where u(x ,  t )  is the velocity and D [ u ]  is the symmetric part of the velocity gradient. 
Equation ( 1 . 1 )  is a Jeffreys’ type of generalization of Boltzmann’s equation of linear 
viscoelasticity in which the presence of a Newtonian viscosity is acknowledged. 
Equation (1 .1)  also holds in the class of small perturbations of rigid motions. 

A constitutive equation of the rate type may be obtained as the time derivative 
of (1 .1 ) :  

OD a7 aD 
- = 2p-+2G(O)D+2 G(s )D[u (x , t -s ) ]ds .  
at at 0 

Jeffreys’ model is a special case of (1 .2)  in which 

~ ( 8 )  = I? e-*lA, (1 .3)  A 

where A is the relaxation time and 7 is the elastic viscosity. Combining (1.2) and (1 .3)  
we get 

aT aD 
A- at = 2pA-++jiD-7, at 
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where ji = ,u + 7. A retardation time 

is usually defined for (1  .a). When y = 0, (1.4) gives rise to a Maxwell model 

aT 
at 

A- = 270-T. 

Fluids with y = 0 are like relaxing elastic solids: they propagate shock waves. Fluids 
with y + 0 are diffusive: they smooth shocks (cf. $3). 

Equations (1.1 ) and (1.2) are perturbation equations and naturally not invariant 
under changes of frame that do not satisfy the same conditions of linearization. 
Various invariant theories that are said to be linear have been proposed. For example, 
Coleman & No11 (1961) linearized a functional depending on the history of the right 
relative Cauchyareen strain tensor. Naturally they arrive at a linear expression, 
linear in this nonlinear tensor. They call this ‘the finite linear theory of viscoelasticity ’. 
When applied to the incompressible fluids they get (1.1) with y = 0 and D replaced 
by C,(x, t - s )  - 1 = G(s), G(0) = 0. The linearization of G(s) around 0 is D (see Joseph 
1976, Chap. XIII). If the relaxation function G(s) = ( q / A )  e-s/A is of Maxwell’s type, 
then Coleman & Noll’s is a lower convected Maxwell model. If we suppose that the 
stress functional depends on the Finger tensor, rather than the Cauchy tensor, we 
arrive at  Lodge’s theory, which is the same as an upper convected Maxwell model 
when the relaxation function is of Maxwell’s type. Saut & Joseph (1983)’ under 
different hypotheses than Coleman & Noll, arrived at (1 . l )  with G(s) in the place of 
D under the integral and y =i= 0. If eaut & Joseph had used H(s) = C;l(x, t -s) -  1 
instead of G(s) they would have H(s) replacing D under the integral. The rate 
equation for an equation of the Saut-Joseph type in H with an exponential 
relaxation function is an Oldroyd B model. None of these so-called linear equations 
are completely linearized. When they are completely linearized they reduce univer- 
sally to (1.1) and (1.2). These two equations are model independent: they apply to 
all viscoelastic fluids in motions which perturb rest. This shows that the Newtonian 
viscosity y and the relaxation function G(s) are genuine material parameters which 
are also model independent. 

To our knowledge, the first person to introduce a rate equation with a Newtonian 
viscosity and relaxing elasticity was Jeffreys (1929, p. 265). Most of the models 
arising from molecular modelling of polymeric solutions have a Newtonian contribu- 
tion from the solvent and are of the Jeffreys’ type. An invariant formulation of rate 
equations containing relaxation and retardation (Newtonian viscosity) effects 
evidently first appears in the celebrated 1950 paper of Oldroyd. Green & Rivlin 
(1960) appear to have been the first to introduce Newtonian viscosity into integral 
models. They get rate terms from integrals by allowing delta functions and their 
derivatives in the kernels. Saut & Joseph (1983) derived integral expressions of the 
type introduced by Green & Rivlin from a theory of fading memory in which the 
ensemble of all possible linearized stresses coincides with a certain topological dual 
of a domain space (say, a Sobolev space) for allowed deformations. Maxwell models 
and the generalization of these embodied in the theory of fading memory of Coleman 
& No11 (see Saut & Joseph for references) cannot contain a Newtonian viscosity. 
These models are all instantaneously elastic. Various kinds of hyperbolic phenomena, 
waves, shock waves, loss of evolution, Hadamard instabilities, and change of type 
arise in fluids with instantaneous elasticity (see Joseph, Renardy & Saut 1985; 
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Joseph & Saut 1986 for recent reviews). Many distinguished scientists of the 19th and 
early 20th centuries, such as Poisson, Maxwell, Poynting and Boltzmann, believed 
that liquids were closer to solids than to gases, with instantaneous and relaxing 
elasticity, and there is also a line of interesting experiments of the same period which 
explore this idea (see Joseph 1986 for a recent historical perspective). 

It is desirable to characterize the static or zero-shear-rate viscosity for ( 1 . 1 )  in the 
following way. Assume steady shearing with one component of velocity u ( x )  
depending on one variable x .  The shear stress T ( K )  = T ~ ,  of 7 depends then on the rate 
of shear K ( X )  = D,, of D and (1 .1)  reduces to T = (p + 7) K ,  where 

1 ; = p + 7  
is the zero-shear viscosity and 

OD 

7 = G(s)ds 
0 

is the elastic viscosity. Newtonian fluids have 7 = 0,ji  = p. Elastic fluids have 
,u = 0,1; = 7. In general 

with equality for elastic fluids. It is easy to measure the zero-shear viscosity ji, but 
the measurement leaves p and 7 undetermined. 

To decide about elasticity and viscosity we could consider ever more dilute 
solutions of polymer chains of large molecules in solvents which are thought to be 
Newtonian. What happens when we reduce the amount of polymer? There are two 
good ideas about this that are in collision. The first (Jeffreys’) idea says that there 
is always a viscosity and some elasticity with an ever greater viscous contribution 
as the amount of polymer is reduced. The theories of Rouse and Zimm (see for 
example, Bird, Armstrong & Hassager 1977) adopt this view. On the other hand we 
may suppose that the liquid is elastic so that p = 0 and the static viscosity ,iZ = 7 
is the area under the graph of the relaxation function. Since 7 is finite in all liquids, 
we have 7 = G(0) X, where A is a mean relaxation time. Maxwell’s idea is that the limit 
of extreme dilution is such that the rigidity G(0) tends to infinity and x to zero in 
such a way that their product 7 is finite. Ultimately, when the polymer is gone, we 
are left with an elastic liquid with an enormously high rigidity. This idea apparently 
requires anomalous behaviour because G(0) appears to decrease with polymer 
concentration when the concentration is finite. 

The contradiction between the two foregoing ideas and the apparent anomaly can 
be resolved by replacing the notion of a single mean relaxation time with a 
distribution of relaxation times. This notion is well grounded in structural theories 
of liquids in which different times of relaxation correspond to different modes of 
molecular relaxation. It is convenient again to think of polymers in a solvent, but 
now we can imagine that the solvent is elastic, but with an enormously high rigidity. 
In fact many of the so-called Newtonian solvents have a rigidity G(0) of the order 
lo8 Pa, which is characteristic of glass, independent of variations of the chemical 
characteristics among the different liquids (for example, see Harrison 1976). To find 
this glassy modulus i t  is necesary to use high-frequency devices operating in the 
range of lo9 Hz. These devices were first introduced by Mason (1947) and Mason et al. 
(1949) at the Bell laboratories. To measure the glassy modulus in low-molecular- 
weight liquids i t  is also necessary to super-cool them to temperatures near the glassy 
state. In these circumstances the liquid acts like a glassy solid, the molecular 
configurations cannot follow the rapid oscillations of stress, and the liquid cannot 

1; 2 7, (1.9) 
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FIGURE 1. Typical relaxation function for a polymer solution. A t  very short times the molecular 
order is frozen and the liquid does not Bow. The wave instantaneously sees a material that looks 
like an organic glass. Then the stress associated with the molecular forces between small molecules 
relaxes. The relaxation of larger structures, like those associated with macromolecules, is much 
slower with an  effective shear modulus more typical of soft rubbers. Eventually all the elastic 
response decays in a diffusive limit with a viscosity given by the area under the graph of G(s) .  The 
effective modulus GJO) can be identified with the measured (Part 2) shear modulus G, = G(e) .  We 
define an effective relaxation function G,(s) with the tangent construction. First put G,(O) = G,;  
then drop the tangent to G(s). This relaxation function may be modelled by a double step. The 
decay of the glassy modes under the first step gives rise to a ‘Newtonian’ viscosity p. The viscosity 
associated with the second step is G,(e,-e),  much larger than p. The total viscosity is 
,G = p+ G,(s, - e ) .  The usual type of estimate for the time of relaxation XG(0) = ,ii would lead one to 
a grossly misleading value of the true ttime of relaxation. 

flow. For slower processes i t  is possible for the liquid to  flow and if the relaxation 
is sufficiently fast the liquid will appear to be Newtonian in more normal flows. For 
practical purposes there is no difference between Newtonian liquids and liquids with 
rigidities of order lo9 Pa and mean relaxation times of about s. In fact it is 
convenient to regard such liquids as Newtonian, even though p = 0 and 1; = 7. 

The presence of polymers would not allow the liquid to  enter the region of viscous 
relaxation at  such early times. Instead much slower relaxation processes associated 
with the polymers would be induced (cf. Mason et al. 1949). The second slower regime 
of relaxation starts in a neighbourhood of small times which terminate fast relaxation 
from the glassy state. A value G,(O) representative of G(t)  at these early times can 
be said to loosely define a second smaller modulus, an effective modulus (see figure 
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1).  For many polymer solutions this modulus defines the effective rigidity of the 
solution against changes of configuration of chains of polymers. It can be said that 
the effective modulus is associated with times so long that fast modes have relaxed 
and so short that slower modes have not. 

The theory that will be developed in the rest of this paper is a linear one based 
on the linearized constitutive equation (1 .1) .  There is some indication from the 
experiments described in Part 2 (Joseph et aZ. 1986) that nonlinear effects are small 
under the operating conditions of the wave-speed meter. 

A list of symbols with meanings that arc not obvious will be found in $8. 

2. The relaxation function and viscosity 
This section is a preparation for the theory and applications of the wave-speed 

meter. Since the meter is used to characterize some rheological properties of a liquid 
it is necessary to eschew special representations of the relaxation function. The 
theory in this paper is based on the linearized constitutive equation (1.1). Following 
ideas already outlined at the end of 5 1,  we shall call ,u the effective (Newtonian) 
viscosity and G,(s), the effective rigidity. To place this effort in context we need to 
know more about conventional methods for measuring ,u and G(s) .  

2.1 . viscosity 
Although it is very easy to measure the zero-shear-rate viscosity ji = ,u+q, direct 
measurement of the Newtonian viscosity ,u seems to be a problem of great difficulty. 
If it were possible to compute the elastic viscosity 7 as the area under the relaxation 
curve we could find ,u = 1;-q. In fact methods for measuring the relaxation function 
are inadequate for small and large values of s, so that the computation of the area 
under the curve is problematic. 

In fact, it  may be true that ,u = 0, ji = 7 in every liquid, without exception. Then 
the effective viscosity would be associated with rapidly decreasing glassy modes 
excited only in rapid deformations. There is an impressive experimental literature 
using state-of-the-art high-frequency devices that supports this view. We lean to the 
view that ,u = 0 in exact sense, but ,u =I= 0 on the timescales relevant for applications. 
All this needs to be explained. For the moment let it  be said that in view of the 
extraordinary effectivenes of the theory of Newtonian viscosity it would be foolish 
to put ,u = 0 in ( l . l ) ,  even if, in fact, ,u = 0. 

2.2. Stress relaxation 
Simplified theories for measuring G(s) using impulsive changes of deformation .are 
described in the book by Bird et al. (1977). Inertia is neglected in the simplified theory 
but it is not negligible near t = 0 .  A theory that accounts for inertia is given in the 
paper by Narain & Joseph (1983a). The neglect of inertia in the simplified theory 
used for step strain experiments on commercial cone and plate rheometers may be 
justified because these rheometers have a response time of about 0.01 s and do not 
give data for small times where inertia is most important. The working formula for 
these rheometers is (see, for example, Bird et al. 1977 p. 284) 

M = t7t R3y, G(t) ,  (2.1) 

where M is the torque, R is the radius of the sample in the apparatus, yo is the shear 
strain and G(t) the relaxation function. 
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2.3. Small-amplitude oscillations 
Small-amplitude, sinusoidal oscillation devices are designed to measure functionals 
on propagating plane waves. Inertia is not neglected. Since the governing equations 
are linear, it is possible to superpose plane waves 

~ ( y ,  t )  = j'Jei(wt-BY), (2.2) 

where w is the frequency of the imposed sinusoidal oscillation and /3 = y + ia is to 
be determined as a solvability condition for the reduced equations of motion 
governing the amplitude. (The condition is that p / w a  = p / 8 * ( w ) . )  The viscosity y 
and relaxation function G(s) enter these equations in a unique composition called a 
complex viscosity (see, for example, Bird et al. 1977) 

def 
q*(o) = p + j m  G(s)e-iwsds = f-if"' (2.3) 

The equations are satisfied when the phase speed V ( w )  = y / w  is given by 
V ( w )  = [2wq2/p(f' + q)]i  and the attenuation by a(w)  = - [0pf2/2q2(7j'+q)]i, where 

q2 = f 2 + f 2 .  It is also useful to define the complex rigidity B(w)* = iwq* = @+iB", 
where @' = w v ' ( w )  is the loss modulus, q' is the dynamic viscosity, and @ = wT("'w) 
is the storage modulus. The storage modulus is an imperfect measure of elasticity (cf. 
discussion of $4 ,  Part 2 )  and vanishes identically for Newtonian liquids. Asymptotic 
forms of q* (w)  can be obtained by repeated integration by parts. Thus 

0 

def 

The limiting value of the storage modulus is the glassy modulus G(0) .  When p .I. 0, 
the limit w - t  00 leads to unbounded values of the phase speed and the attenuation 
(cf. (2 .9) ) .  On the other hand, when ,u = 0 

, 
lim [ V ( w ) , a ( w ) ]  = 

W + C C  

where c = (G(O)/p)t is the speed and G(O)/BcG(O) is the attenuation for shock waves 
of vorticity (shear) into liquids at rest. 

2.4. Spectral decomposition of G(s) ; effective moduli 
We may understand glassy moduli, effective moduli, viscosity, fast and slow modes 
through a spectral decomposition of G(s) in the instantaneously elastic case, y = 0. 
It suffices here to consider a finite basis of N modes of relaxation 

N \ 

N 

1 
= 7 =x 7,- 

Suppose that e is a small time defined by a physical process of interest and e = A,. 
Then, for short times t < A,  all the modes k 2 Mare glassy. For t > A, all the modes 
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with k < 1M have decayed. The effective (Newtonian) viscosity p and rigidity G,,(s) 
may then be defined as follows: 

p =,U+r, 

For many polymeric solutions p/; is very small and the contributions of the fast 
modes may be expressed by a relatively small Newtonian viscosity. 

Let us now suppose that we have modelled the relaxation function so that the fast 
modes are expressed by a small viscosity and the slow ones by a single relaxation 
time. Then 

Large frequencies w correspond to small times t .  The asymptotic values for large w 
are 

corresponding to a New-ian fluid. If, on the other hand, p / k  = E is small, w large 
and 

then P = C 2 + O ( E ) ,  c2 = 1 (2.10) 
AP’ 

is the limiting wave speed for a Maxwell model. If, in addition A2w2 4 I/€,  Then the 
attenuation -(a2)+ for large w is also that for a Maxwell model. In  this case the 
effective modulus is T / A  and it can be obtained by measurements at large frequencies, 
which are sufficiently small so as not to excite the fast (here, viscous) modes (see $3). 

The existence of slow and fast modes, of different times of relaxation, corresponding 
ta different mechanisms of relaxation, is suppressed by the notion of a mean 
relaxation time. The equation 7 = G(0) A cannot be a very useful description of stress 
relaxation when there are very different times of relaxation. The relaxation from the 
huge glassy modulus G(0)  (say loB Pa) is very fast and the area under this fast mode 
gives rise only to a very small fraction of the total viscosity. Typically the total 
viscosity is associated with the slow relaxation A,, 9 of modes associated with a 
much smaller modulus G,,(O) (see figure 1). 
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3. Propagation of shear waves into a semi-infinite region 
The theory of the wave-speed meter requires that one first understands some ideas 

based on the analysis of propagation of waves of shear into viscoelastic fluids at  rest. 

3.1. Stokes’ Jirst problem for viscoelastic liquids 

A planar shear flow is a unidirectional velocity field u = e, u ( y ,  t )  which depends only 
on the coordinate y perpendicular to the direction of motion. Rheological properties 
of liquids can have a big effect on the way that shear discontinuities propagate. In 
Stokes’ first problem we prescribe a shock in the velocity for boundary data at y = 0. 
We then determine how this data will propagate into the fluid above ( y  > 0) the plate. 
In addition, 

u ( y , t )  = 0 for t < 0 (3.1) 

is prescribed for all y 2 0. The stress and velocity in y 2 0 satisfy 

au aT P t = G ’  
aT 

where u ( y , t ) + O  as y + m .  

These equations may be combined and written as 

(3.3) 

At the plate we have u(0,t)  = U H ( t ) ,  (3.4) 

where H ( t )  is Heaviside’s step function. 

interior by diffusion with 
When G( a )  = 0 there is no elasticity and the step input is transmitted to the 

u ( y ,  t )  = U erfc ~ 

[(4pf/p)J 

For elastic waves ,u = 0 and (3.3) is like a telegraphers equation. When 

then (3.3) reduces to 

This telegraphers equation is hyperbolic and transmits waves, but the waves are 
damped. 

It would not be useful to base a rheometrical theory on a special case. It is 
necessary to understand how shear-wave propagation depends on the relaxation 
function G(s) and the viscosity p. 

There are many papers on Stokes’ first problem, or problems equivalent to it, which 
are based on Maxwell models. The first group of papers is for elastic fluids p = 0 with 
G(s) = (7/A)e-S/A. The solution of (3.1)’ (3.4) and (3.5) is given by Carslaw & Jaeger 
(1947). Step jumps of velocity between two plates have been studied by Bohme 
(1981)’ Kazakia & Rivlin (1981), Rivlin (1982, 1983) and Christensen (1982). Stokes’ 
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first problem with ,u =+ 0 and G(s)  = ( r / h )  e-s/A has been studied by Morrison (1956), 
Tanner (1962) and Saut & Joseph (1983). Stokes’ first problem for fluids with 
instantaneous elasticity, I(. = 0 and a general relaxation function G(s)  was studied by 
Chu (1962), Narain & Joseph (1982, 1983a, b) and Renardy (1982) and an allied 
problem was studied by Coleman, Gurtin & Herrara (1965). All but the authors last 
mentioned use the method of Laplace transforms and all find that the discontinuity 
propagates into the fluid at rest with a speed and attenuation given by 

Narain & Joseph (1982) also gave a boundary-layer analysis for small values of ,u. 
The solution of Stokes’ first problem with ,u + 0 and a general relaxation function 
has recently been obtained and computed by Preziosi & Joseph (1986). 

3.2. Scale invariance 
We turn next to new results which are important for our analysis of viscosity and 
rigidity and for the analysis of the wave-speed meter. We shall begin with the general 
problem when ,u = 0 and show how an effective ,u arises from the decay of the fast 
modes. The solution of (3.1)-(3.4) with ,u = 0 is given by the Laplace inversion 
integral (see Narain & Joseph 1982, equations (5.1) and (5.10)): 

U y+im d w  
U ( Y ,  t ;  G )  = - 2xi s y-im - w exp [ wt - Y (&)y (3.7) 

m - 
where G(w) = G(s) e-Ws ds (3.8) 

0 

is the Laplace transform of G(s). We assume that G(s) is positive, smooth and 
decreasing, and such that c ( w )  is analytic in the positive part of the complex-w plane 
with the origin excized. All these hypotheses hold, for example, when G(s)  is 
expressed by a discrete relaxation spectrum, as in (2.6), or by an infinite number, 
or even a continuum of such modes. 

The notation used in (3.7) makes explicit that the velocity at point (y, t )  is for a 
fluid with relaxation function G(s). The solution is a functional of G( - ). 

Our first new result is that the solution of Stokes’ first problem satisfies a certain 
type of group invariance, which we call scaling under radial shifts of y and t .  The 
radial shift is given by 

The scaling invariance is then described by the following relationship : 

( Y , t )  = ($L$d> 0 < $ < m. (3.9) 

u ( y , t ; G )  = U ( C , W q ,  (3.10) 

where G$W = G($s). 

The scaling invariance says that different observers at different points on a radius 
in the ( y ,  t)-plane see different scaled relaxation functions. 

To prove (3.10) we change variables as in (3.9) and write w = a/$. We find easily 
that 

(3.11) 

where 
- 
G&Q) = Im G($s) e-as ds. 

0 
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3.3. Asymptotic results 
Various asymptotic results may be derived from (3.10). The strategy is to take (5,7) 
as O( 1) and to derive asymptotic results by taking various limits for 9. The first result 
is for small t and y, q5 +O : 

(3.12) 

To prove this we write 

G,(SZ) = [a e-n8[G(0) +$sG(O) + O($zs2)] ds 
0 

= - + - + O ( g J .  0) 9G’(O) 
52 5 2 2  

The integrand for the inversion integral may be written as 

=“..p[w] sz exp0(.-9[1+0($?]. 

After integrating, using the contour appropriate for Heaviside functions (e.g. figure 
5.1 in Narain & Joseph 1982), we get (3.12). 

We recall that the exact solution of (3.1)-(3.4) with ,u = 0 is of the form 

YC‘(0) u(y,t;G) = Uf(y,t)H t - -  , y,- = exp- ( f (  2cG(O)’ 
The result (3.12) is hardly surprising; when y and t are small we may replace f(y, t )  

The second result is for large t and y, t -  y l c  > 0. If $ = 1 / ~ ,  e+ 0, we find that 
withf(y, YlC). 

u(y,t;G) = Uerfc 

To derive this we note that 

(3.13) 

- G,(52) = Jr G(:)e-”8ds. 

As E + O  the relaxation function collapses on the origin, like a delta function, and 

provided that 1521 is not too large. In  fact, the integrand in the inversion integral tends 
rapidly to zero for large O on the contour of integration. Then, with a small error, 
we get 

= Uerfc - 
[ 2 ( 9 j  



Shear-wave speeds and elastic moduli. Part 1. Theory 299 

When t and y are large the solution looks Newtonian with viscosity 7. The same type 
of result holds when ,u =+ 0 with 7 replaced by C. 

3.4. Effective moduli 
The third result to come out of scaling invariance shows how an effective viscosity 
and modulus can arise when different molecular substructures have different times 
of relaxation. We shall suppose that there is an additive decomposition for G(s),  as 
in (2.7), with 

G(4 = G o ( 4 + Q p ( 4 ,  (3.14) 

where A, is a short mean time of relaxation and 
r m  

,u = J Go(s)de. 
0 

We find that when t % A,, t -  y /c  > 0, then with a small error 

(3.15) 

(3.16) 

where G,(w) is the Laplace transform of GJs). This is the solution of (3.1)-(3.4) when 
,u + 0 and G(s) = G (8). The elastic response of unrelaxed modes is smoothed by the 
viscosity ,u inducedby modes already relaxed. 

A heuristic argument for (3.16), which can be made precise, starts from 

where 

and 

m - 
Gt(Q) = 5 G,(gls)e-Rsds 

0 

- 
G$a) = lm GJgls) e-Ra ds. 

0 

The function Go(s) has a mean relaxation time A, and q5 > A,. Hence, Go(@) is 
crowded at the origin like a 8-function, nearly zero for very small values of s for which 
ens - 1 .  Then, with a small error 

and (3.16) follows after rescaling. Small errors are associated with large values of 101 
on the line of integration ReQ = y. The integrand is very small, and also oscillates 
rapidly when ll2l is large. Of course, G,(s) could still be glassy at times large enough 
for Go(&) to have relaxed completely. 

3.5. Perturbed elasticity 
Having started the study of the problem with ,u = 0, we turn now to the study of 
Stokes’ first problem when the viscosity ratio 

J = - ;  deP ,u ( O < J < i )  
ru 

is small. Our aim is to establish the shock-layer approximation 

(3.18) 
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where 

and 

(3.19) 

(3.20) 

This result holds for sufficiently small values of p2JycP/jir and J .  
The viscosity ratio arises from the following change to  dimensionless variables : 

(3.21) 

Clearly, g(0) = 1. After introducing this change of variables into (3.1), (3.3) and (3.4), 
using the effective modulus we find that v(x, 7 ,  J )  satisfies 

v(x ,7)  = 0 for 7 < 0. I 

We note that 1 - J = v/,G. When J = 0 ,  

(3.23) 

The functionf(x, 7 )  is defined, up to the change (3.21) to dimensionless variables, by 
the expression for f ( x ,  t )  given by equation 5.10 of Narain & Joseph (1982). 

For the Jeffreys’ model g ( s )  = e P  and 

v,,+v,-v,, = Jv,,,. 

In  this case the viscosity ratio is the only parameter in the problem. The viscosity 
ratio J = a,  where a = h2/h,,  is the ratio of relaxation upon retardation time, as used 
by Tanner (1962). 

The effect of a small viscosity is to smooth the shock. The amplitude of the shock 
decays rapidly and eventually the solution looks diffusive, with viscosity 1;. We look 
for smoothing at  small values of ( x ,  E )  where the unperturbed problem has a large 
f(x, 7 )  and a large shock. We follow Narain & Joseph (1982) and change variables 

(3.24) 
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We look at small values of x and t in the limit J+O. Assuming that g’(0) is finite, 
we find that V ( X ,  T, 0) satisfies 

(3.25) I 
I 

VTT = Vxx+ Y x x T ?  

V O ,  T) = H(T),  

V ( X ,  T) = 0, T < 0. 

This problem governs the perturbation of Stokes’ first problem for pure, rather than 
relaxing, elasticity. An exact solution of (3.25) was given by Morrison (1956, equation 
A 14). This solution smooths the Heaviside function. M. Renardy (private communi- 
cation; to appear in Hrusa, Nohel, Renardy 1986) has studied the 

(3.26) 
u,, = u x x  + ~ U z m  

U ( 0 , 7 , 4  = H(tL 

U(X,T,C) = 0, 7 < 0, 

which arises from changing variables [X, T, v] = [ ( x / e ) ,  ( 7 / 4  u]. He estimates the 
Laplace inversion integral for (3.26) to obtain a small-e approximation for (3.26) 
under the following change of variables : 

7--2 
x = x ,  f = -  

(ex): ’ 
and he shows that with a small error 

U(x,~,e) = e-@’d$ = w ( f )  I:, 
depends on f alone, provided that (ex): is small. Note that 

(3.27) 

(3.28) 

Clearly 

w ( - c o )  = 0, w(co)  = 1. (3.29) 

lim w ( f )  = H ( t - x ) .  
€4 

Renardy’s result may also be obtained directly from (3.26) using the change of 
variables (3.27). We find that when ex is small and x-derivatives are relatively small 

w.gc + f W f [  + W [  = 0, (3.30) 

subject to (3.29). Equation (3.28) represents the effect of diffusion in smoothing the 
propagating step function. This analysis shows that the size of the shock layer 
perturbing the propagating step scales with (ex)% 

We may now identify 8 = J; note that 

U(X, 7, J )  = f(x, 7) NE), (3.31) 

with the f(x, 7) as in (3.23) also satisfies (3.30), the boundary conditions and initial 
conditions to lowest order in J. We note next that (3.31) is not uniformly valid; i t  
is not exactly correct, for example, at x = 0 when J =+= 0. A composite shock-layer 
solution, given by Narain & Joseph (1982, figure 18.1) with ax replaced by (Jx):, 
eliminates this non-uniformity . 

4. Mathematical model of the wave-speed meter 
We consider two long concentric cylinders of length 1;̂ and radius b and a, b > a. 

Fluid fills the gap b-a. At some instant the outer cylinder is forced to rotate with 
an angular velocity given arbitrarily as Q(t ) ,  t 3 0. The inner cylinder is free to rotate 
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on its axis, without friction. Eventually, the shear induced by the outer cylinder 
causes the inner cylinder t o  move. We want to determine how the data propagate 
from the outer cylinder to the inner one, the conditions under which the propagation 
is dominated by shear waves and the dependence of the speed of propagation on 
material parameters. The theory that we shall present is meant to guide rheometrical 
devices using shear waves into regions a t  rest in the same sense that the theory of 
small-amplitude sinusoidal oscillations guides devices used to  measure the complex 
viscosity. 

The linearized mathematical problem for the device just described, neglecting end 
effects, can be expressed relative to  polar cylindrical coordinates ( r ,  8, z )  as follows: 

The input a t  the outer cylinder r = b is prescribed: 

bQ(t), t > 0, 
w(b, t )  = 

(0, t <o .  
The output a t  the inner cylinder is that the fluid and cylinder velocities are the same 
a t  r = a ,  

and that the shear stress T('@(a, t )  on the cylinder gives rise to  the torque which turns 
the cylinder : 

where L is the filling level and I is the moment of inertia. 

for the moment adopt Boltzmann's generalization 

IB' = 2 7 ~ a ~ L T ( ~ ~ ) ( a ,  t ) ,  (4.4) 

To complete the statement of the problem we need to  relate w and T('@. We shall 

T('@(r,t) = jr G(~)[&-~]( r , t - s )da ,  aw 
(4.5) 

of Maxwell's equation. Our understanding, as in $2, is that  the spectrum of G(s) may 
include glassy modes with high rigidities that  in the absence of slow modes, like those 
for polymer solutions, simulate Newtonian fluids. We may combine (4.3), (4.4) and 
(4.5) to  give 

aw 
at 

I - (a , t )  = h a 3 L  

The linearized dynamics of the wave speed is governed by (4.1), (4.2) and (4.6). 
The same problem but with (4.6) replaced by w(a,t)  = 0 was solved by Narain & 
Joseph (1982). Here we shall reduce this new problem to the old one and derive some 
previously unspecified properties of the old problem. 

Since the gap d / b  < 1 in the wave-speed meter and it is these small gaps which 
are of greakst interest, we may seek a simplified problem for small d / b .  
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5. The narrow-gap approximation for short times 
This approximation is associated with the following physics. A shear wave is 

initiated at the outer cylinder. When this wave hits the inner cylinder, the velocity 
a t  r = a is initially zero, the shear velocity that hits r = a is annihilated by the 
reflected wave at the time of first reflection, but the shear stress a t  r = a doubles and 
this provides the torque that turns the inner cylinder. This leads to  a problem that 
satisfies w(a, t )  = 0 a t  the short time of first reflection. This problem defines a family 
of initial-value problems for an elastic fluid which includes Stokes' first problem. The 
equation of motion (4.6) for the cylinder is solved as an afterthought, with the first 
approximation to  w on the left and the zeroth order on the right. 

We shall now derive the physical result described in the last paragraph. We define 

v (y , t )  = w(r f! y = b - r ,  (5.1) 

and seek w(y, t )  as a series in S = d / b ,  valid for short times in the neighbourhood of 
the first time of reflection : 

w(y,t) = v0(y,t)+Sw1(y,t)+6'w2?,~y,t)+ ... . (5 .2)  

To derive the problems satisfied by vo, wl, etc. we introduce the fast dimensionless 
times 7 and u 

and 

where 0, is the largest value of Q(s). We first determine that 

au 
(z, 7-  a) da -- 

I u(x ,7)  = 0, 

U(0,T) = 

7 < 0, 

(0(7), 7 > 0 

lo ,  7 < 0, 

(5 .5b)  

where W ( T )  = Q(t ) /Q0 and 
def 

B(u) = G(s)  = G (5.6) 

Short times are times At < &/ao. The main effect of our scaling is to introduce 6 as 
a factor on the right of ( 5 . 5 ~ ) .  We now expand 

u(x ,7)  = uo+Sul+S'u,+ ... (5.7) 
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and identify the coefficients of powers of S. At zeroth order 
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Uo(l,T) = 0, 7 > 0. 

This is a generalization of Stokes' first problem in which arbitrary initial data replace 
a unit step jump. At first order, we find that 

and u , ( z , ~ ) = 0 , 7 < 0  in O < z <  1 ,  (5.9b) 

while u,(O, T )  = 0 for all 7 > 0. (5 .94  

The motion of the inner cylinder is then governed by 

(5.10) 

Equations (5.9) and (5.10) determine ul ( z ,  7 ) .  ul( 1 , ~ )  may be found from (5.10). 
We have found that for small times the motion of the inner cylinder is determined 

by (5.10) where uo(z, T )  satisfies (5.8). This perturbation can be established rigorously 
using Laplace transforms. The perturbation is not valid for long times. 

6. Response of the inner cylinder to a step change of velocity of the outer 
cylinder 

Ideally we should like t o  be able to  move the outer cylinder impulsively, with 

8 ( T )  = 1 ,  7 > 0 (6.1) 
in (5.5b). The problem (5 .8)  with unit-step-function data (6.1) was solved by Narain 
& Joseph (1982). They found (cf. their (8.7)) that  

U o ( Z , T )  =f(x,~)H(7-&&X)+{f(ll:+2, T ) H [ T - & ( Z + 2 ) ]  

- f ( 2  - 5 , T )  H[T - &(2 - X)]} + . . . , (6.2) 

where 

is a dimensionless wave speed and - 

f(x, &+) = exp (6.3) 

The solution (6.2) actually describes the development of steady Couette flow through 
multiple reflections. It is a valid solution of our problem only at early times near to 
the time T = & of first reflection, that  is when 
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The velocity u o ( l , S )  = 0, but the stress doubles a t  x = 1 and r = & (cf. equation 
(3.10) of Narain & Joseph 1 9 8 3 ~ ) .  

To find the motion of the inner cylinder (at x = 1 )  in the interval (a, 2B) of time 
r between the first and second reflection, we evaluate (5.10)’ using (6 .2)  : 

au0 af 
ax ax - (1,7) = -2&f(l, 7 )  f (7-a)  4- 2 - ( 1 , 7 )  H ( 7 -  S), 

where 8(7-a) is Dirac’s &-function. Inserting this into (5.10) we find 

af aU,(l,T) 4na3L[ 7-a 
=- aG(7 - &)f( 1 ,  B+ ) - &(a) ( 1 , ~  -a) dn]. (6 .4)  a7 IbQi 0 

Equation (6 .4)  is the differential equation which governs the motion of the inner 
cylinder. The wave-speed meter requires that we know ul( 1 , 7 )  for very small values 
of 7-2 3 0. In  this time interval we may write (6.4) as 

where 
4xa3L S@(O)  

IbD: 2@0) ’ 
A,  = - SG(0) exp [ -1 
A1 = -[S@(O)exp 4na3 L [ - ] - B ( O ) - ( l , S + ) ] ,  SB (0) af 

ax IbD: 2@(0) 
where (af/az) (1, &+) is given in known terms by equation (1.5) of Narain & Joseph 
(1983 b ) .  

Returning now to physical variables we may write 

aw(a,t) b2 a u ( 1 , ~ )  -- - - D i p *  
at d a7 

Hence, using (5 .6)  and (5.7), 

Since w(a, t )  = ad, we have 

This useful formula shows how the inner cylinder moves after being hit by a wave. 
It is of interest to compare the response of the inner cylinder to step data of the 

form (6 .1)  for an elastic fluid and a Newtonian fluid. Solutions for Stokes’ problem 
in a semi-infinite region and between rigid walls are well known. We write a formula 
for the torque on the inner cylinder a t  r = a using these two solutions and integrate 
the equation of motion for the inner cylinder. At small times this gives 

8a2LbQOp(nv)i 
31 

t 2  + o(d)  e(t) = 

for the problem between parallel plates and one-half of this value for the problem 
in a semi-infinite region. The displacement starts a t  the instant that  the outer 
cylinder is moved. There is no transit time, no delay, under the assumptions of this 
analysis. 
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7. Response of the inner cylinder to a smooth change of velocity of 
the outer cylinder 

The kicking mechanism that moves the outer cylinder of the wave-speed meter 
does not lead to a step jump of velocity as was assumed in $6. Instead there is a 
smooth rise which is recorded from oscilloscope traces shown in $ 1 of Part 2. We have 
solved the problem for arbitrary smooth inputs. We modelled the actual input and 
showed that the response for this model differs only slightly from the response for 
the step jump when d / b  4 1 and a / A p  4 1, where is the time the outer cylinder 
needs to accelerate to a constant angular velocity and A, is an effective time of 
relaxation for an effective modulus (see figure l ) ,  which we modelled with a single 
exponential G(s) = Gp e-s/Ap. 

8. Nomenclature 

are locally defined, and some common symbols with clear meanings. 

C 

d = b-a Gap size 
D[Ul 
G(S), G p ( 4  Shear relaxation functions 
W), G,(O) Shear moduli 

Gp(0) = Gc Effective shear modulus, Gc = pc2 is experimentally determined 

It should be noted that rheologists usually call the relaxation function a relaxation 
modulus. We use the word modulus for a value of this function. 

G(s) = C,(s) - 1 The right relative Cauchy-Green tensor minus the identity 
tensor 

@(4, i 4 " (4  Storage modulus, loss modulus. These quantities and the com- 
plex viscosity are obtained in dynamic measurements using 
small-amplitude oscillations 

This section contains definitions of symbols used in this paper, omitting those that 

Shear-wave speed, speed of a discontinuity propagating into a 
region at rest 

Symmetric part of the velocity gradient 

def 

J = PIk Viscosity ratio 
1 1 

a = -, oi = -bOo 
C C 

(0 

7 = cT(s)ds Elastic viscosity 

7* Complex viscosity 
P Newtonian viscosity 
P = P + 7  
w Radian frequency 
Q ( t )  
0 0  Maximum value of O(t) 

0 

Zero shear or static viscosity 

Angular velocity of the outer cylinder 
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Important times : 

At = ad Transit timet 
Ato7 Atc 

Ata, Atb 

Transit time, measured on the oscilloscope and on the electronic 
counter, respectively? 
Fall times of the voltage at the photodiodes corresponding to 
the inner and outer cylinder respectivelyt 
Rise time of the input signal 
Response time of the experiment defined by G, = G(E)  
Relaxation times (A, for glassy modes, A, for viscoelastic modes) 
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